Programming and Reasoning with Guarded Recursion for Coinductive Types
نویسندگان
چکیده
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal functions. We give a call-by-name operational semantics for the calculus, and define adequate denotational semantics in the topos of trees. The adequacy proof entails that the evaluation of a program always terminates. We demonstrate the expressiveness of the calculus by showing the definability of solutions to Rutten’s behavioural differential equations. We introduce a program logic with Löb induction for reasoning about the contextual equivalence of programs.
منابع مشابه
The Clocks Are Ticking: No More Delays! Reduction Semantics for Type Theory with Guarded Recursion
Guarded recursion in the sense of Nakano allows general recursive types and terms to be added to type theory without breaking consistency. Recent work has demonstrated applications of guarded recursion such as programming with codata, reasoning about coinductive types, as well as constructing and reasoning about denotational models of general recursive types. Guarded recursion can also be used ...
متن کاملThe Guarded Lambda-Calculus: Programming and Reasoning with Guarded Recursion for Coinductive Types
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be transformed into coinductive types by a type-former inspired by modal logic and Atkey-McBride clock quantification, allowing the typing of acausal ...
متن کاملA Model of PCF in Guarded Type Theory
Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous work has shown how guarded recursion is useful for constructing logics for reasoning about programming languages with advanced features, as well as for constructing and reasoning about elements of coinductive types. In this paper we investigate how type theory with guarded recursion can be u...
متن کاملGuarded Cubical Type Theory: Path Equality for Guarded Recursion
This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-...
متن کاملDenotational semantics for guarded dependent type theory
We present a new model of Guarded Dependent Type Theory (GDTT), a type theory with guarded recursion and multiple clocks in which one can program with, and reason about coinductive types. Productivity of recursively defined coinductive programs and proofs is encoded in types using guarded recursion, and can therefore be checked modularly, unlike the syntactic checks implemented in modern proof ...
متن کامل